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Abstract

In this paper, we extend the difference formulation for radiation transport to the case of a single atomic line. We

examine the accuracy, performance and stability of the difference formulation within the framework of the Symbolic

Implicit Monte Carlo method. The difference formulation, introduced for thermal radiation by some of the authors,

has the unique property that the transport equation is written in terms that become small for thick systems. We find

that the difference formulation has a significant advantage over the standard formulation for a thick system. The correct

treatment of the line profile, however, requires that the difference formulation in the core of the line be mixed with the

standard formulation in the wings, and this may limit the advantage of the method. We bypass this problem by using

the gray approximation. We develop three Monte Carlo solution methods based on different degrees of implicitness for the

treatment of the source terms, and we find only conditional stability unless the source terms are treated fully implicitly.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Time-dependent transport of radiation from resonance lines is an important component of the physics of

stellar atmospheres and of laser-produced plasmas. In optically thick systems, the radiation transport
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equation for photons is dominated by many spontaneous emission and absorption events and is tightly cou-

pled to the level population equation. This system of equations can be difficult to solve numerically in any

discretized scheme in time and space due to its stiffness and the wide range of opacities inherent in an atomic

line profile.

It has been known for many years that the explicit Monte Carlo solution of the radiation transport equa-
tion, coupled to the material response equation, for a strongly absorbing and emitting material, is numer-

ically unstable. One reason for this is that in optically thick regions both the emission and absorption terms

are large and the net emission (or absorption) of radiation is a small difference of these two quantities. Any

small imbalance or inconsistency in space and time between absorption and emission terms can lead to

instability. This difficulty requires that the source terms in the transport equation be implicitly differenced

when using Monte Carlo methods for its solution [1].

The first successful – and now widely used – method for addressing this difficulty came from Fleck and

Cummings [2,3]. Their method, called implicit Monte Carlo (IMC), converts part of the absorption-emis-
sion cycle into instantaneous effective scattering. The net effect of IMC is to reduce the strength of the cou-

pling between the photon transport equation and the material energy equation by peeling off part of the

coupling and treating it as effective scattering. Stability is achieved by weakening the radiation-matter cou-

pling. This can lead to unphysical results [4] in addition to a significantly increased execution time to handle

the scattered photons.

A second approach to the problem of numerical stability was published in [5,6]. In this scheme

Monte Carlo particles are emitted and tracked with weights that remain unknown to within a multipli-

cative factor until the end of the integration cycle. This method, called symbolic implicit Monte Carlo
(SIMC), removes the costly effective scattering of IMC and does not artificially weaken the radiation-

matter coupling. However, in thick systems the strong emission and absorption terms lead to increased

Monte Carlo noise.

The difference formulation for photon transport [7] directly addresses the stiffness problem by employing

a transformation that replaces the spontaneous emission term with source terms that are small when the

local coupling between spontaneous emission and absorption is strong. Our goal in this paper, is to explore

whether or not the difference formulation is cleanly applicable to the case of line transport. We implement

and study a numerical application of the difference formulation for the case of the transport of a single
atomic line, examining the issues of accuracy, stability and efficiency.

In Section 2 we introduce the equations for line transport first in the standard formulation, and then

in the difference formulation. There, a difficulty for the wings of the line appears that would force us to

mix the standard formulation with the difference formulation in order to treat a real line profile. We

conduct our numerical investigation with a gray (square) line shape function in order to sidestep the

issue. The section concludes with a discussion of our treatment of boundary conditions within the

new formulation.

Section 3 addresses some details of the numerical treatment of the difference formulation, including the
new source terms. The SIMC solution method [5], applied to the standard formulation, requires the solu-

tion of a linear system in order to update the atomic populations at the end of the integration cycle. The

corresponding population update for the difference formulation is non-linear, requiring a Newton–Raph-

son solver. Whether or not implicit treatment of the source terms is required in the difference formulation is

an open question that we investigate. To this end, we develop three treatments of the source terms, each

with differing levels of implicitness. Our explicit treatment is free of a non-linear matrix solve, but is only

conditionally stable. Our fully implicit treatment requires a non-linear matrix solve, but numerical evidence

suggests that it is unconditionally stable. A semi-implicit method is examined and gives some insight into
the numerical instabilities arising in the explicit treatment of the source terms.

We compare the accuracy, efficiency and numerical stability of the SIMC method in the standard for-

mulation to our implementations of the difference formulation in Section 4. We demonstrate that the
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difference formulation delivers a startling decrease in noise, or an equivalent increase in execution speed for

a given noise figure, when compared to the Monte Carlo solution of the standard formulation for transport.

Finally, we present a summary of this work in Section 5.
2. The equations for line transport

We present the transport equations for photons for a two-level atomic system in slab geometry, where

the photons are emitted and absorbed according to the same line profile, /(m), in the regime of complete

redistribution. The transport equation for photons is coupled to the population equations for the atomic

levels. Motion of the medium and physical scattering of photons are not considered, but we include colli-

sional pumping between atomic levels.

2.1. The standard formulation

In what we refer to as the ‘‘standard formulation,’’ we write the photon transport equation as
of
ot

þ cl
of
ox

¼ n2
2
A21/� c K12n1 � K21n2ð Þ/f ; ð1Þ
where c is the speed of light, x is the position coordinate perpendicular to the slab, l is the direction cosine

of the radiation with respect to x axis, f(l,m,x,t) is the photon number density distribution per unit atom

density, n2(x,t) is the upper level population fraction, n1(x,t) is the lower level population fraction, A21 is

the spontaneous emission rate, /(m) is the line profile normalized to unit integral [8], and K12 = jN where

j is the lower state absorption cross section and N is the atom number density. The coefficient K21 satisfies

the Einstein relation
K21 ¼
g1
g2

K12; ð2Þ
where g1 and g2 are the statistical weights for levels 1 and 2, respectively. For the purposes of this paper, we

consider all material parameters, C12, C21, A21, K21 and K21 to be independent of x, constant in time, and
assume complete redistribution within the line shape.

The equations governing the atomic population fractions n1 and n2 are
on2
ot

¼ C12n1 � C21n2 � A21n2 þ c K12n1 � K21n2ð Þ
Z 1

�1

dl
Z 1

0

dm/ðmÞf ðl; mÞ ð3Þ
and
n1 þ n2 ¼ 1; ð4Þ

where C12 and C21 are rate constants for the collisional transitions 1 ! 2 and 2 ! 1, respectively.

Using Eq. (4), Eqs. (1) and (3) are rewritten as
of
ot

þ cl
of
ox

¼ n
2
A21/� c K12 � K21 þ K12ð Þn½ �/f ð5Þ
and
on
ot

¼ C12 � C12 þ C21 þ A21ð Þnþ c K12 � K21 þ K12ð Þn½ �
Z 1

�1

dl
Z 1

0

dm/ðmÞf ðl; mÞ; ð6Þ
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respectively, where n is the upper level population fraction. We refer to these equations as the standard for-

mulation for line transport in the context of this paper.
2.2. The difference formulation

The difference formulation, introduced in [7], removes the spontaneous emission term and the trouble it

causes for thick systems through a simple transformation of the transport equation. The transformation

produces a transport equation with new source terms that are small for thick systems, at least in the core

of the line, and leads to an efficient numerical solution in optically thick media.

For the case of line transport, the difference formulation is derived by considering the radiation field that

is in equilibrium with a given upper level atomic population fraction
Bðnðx; tÞÞ ¼ nðx; tÞA21

2c½K12 � nðx; tÞðK21 þ K12Þ�
: ð7Þ
The equilibrium field, B, defined in Eq. (7) is independent of photon frequency.

We begin the transformation to the difference formulation by rewriting the spontaneous emission term

from Eq. (5), as well as from Eq. (6), using the equilibrium field, Eq. (7).
of ðx; t; m; lÞ
ot

þ cl
of ðx; t; m; lÞ

ox
¼ �c K12 � K21 þ K12ð Þnðx; tÞ½ �/ðmÞ f x; t; m; lð Þ � Bðnðx; tÞÞ½ �; ð8Þ

onðx; tÞ
ot

¼ C12 � C12 þ C21ð Þnðx; tÞ þ c K12 � K21 þ K12ð Þnðx; tÞ½ �

�
Z 1

�1

dl
Z 1

0

dm/ðmÞ f ðx; t; m; lÞ � Bðnðx; tÞÞ½ �: ð9Þ
Next, we define the ‘‘difference’’ intensity,
dðx; t; m; lÞ ¼ f ðx; t; m; lÞ � Bðnðx; tÞÞ: ð10Þ

We note that this is our first sign of trouble for the difference formulation when applied to the case of line

transport. The fact that B does not depend upon mmeans that in the wings of the line where f is small – even

for a system that is thick in the core of the line – the difference field d must be large in order to compensate.

The result will be an increase in noise in the wings of the line. We will return to this issue in what follows.

Substituting Eq. (10) into the transport equation gives
of ðx; t; m; lÞ
ot

þ cl
of ðx; t; m; lÞ

ox
¼ �c K12 � K21 þ K12ð Þnðx; tÞ½ �/ðmÞdðx; t; m; lÞ: ð11Þ
We now subtract the derivatives of B from both sides, giving
odðx; t; m; lÞ
ot

þ cl
odðx; t; m; lÞ

ox
¼ �c K12 � K21 þ K12ð Þnðx; tÞ½ �/ðmÞdðx; t; m; lÞ

� oBðnðx; tÞÞ
ot

� cl
oBðnðx; tÞÞ

ox
: ð12Þ
The population equation becomes
onðx; tÞ
ot

¼ C12 � C12 þ C21ð Þnðx; tÞ þ c K12 � K21 þ K12ð Þnðx; tÞ½ �
Z 1

�1

dl
Z 1

0

dm/ðmÞdðx; t; m; lÞ: ð13Þ
We refer to these equations as the difference formulation of line transport.



F. Daffin et al. / Journal of Computational Physics 204 (2005) 27–45 31
Our formal manipulations give us two equivalent forms for the transport and atomic population equa-

tions: Eqs. (5), (6) and Eqs. (12), (13). The two sets of equations satisfy equivalent boundary and initial

conditions and were obtained without approximation.

2.3. Boundary conditions for the difference formulation

In order to relate the boundary conditions for the standard formulation to those for the difference for-

mulation, we use the fact that the upper level atomic population fraction n is the same for both and use the

relation d = f� B(n) to construct the d field from f. The strict non-negativity of f translates into a lower

bound for the difference field, d P �B. When an initial condition is specified for f, the corresponding

condition for d can be obtained by the above relation.

In this work the physical medium has finite extent with vacuum boundary conditions. We specify that n

be zero in the vacuum and thus d = f there, accordingly. The emission from the surface into the vacuum is
given by the �cloB/ox term at the boundaries, in addition to the particles that escape from within. It con-

sists of emission of positive d = f particles into the vacuum, and negative d particles into the material, cool-

ing it, and gives a natural prescription for treating boundary conditions in the difference formulation.
2.4. The gray approximation

The line emission profile /(m) occurs in both the spontaneous emission and the absorption terms for line

transport. This leads to the frequency independence of the equilibrium field, B(n(x,t)), and the result that
the difference field does not become small in the wings of the line as the optical thickness of the problem is

increased. In practical terms, this means that even the simplest line transport problem must employ a mix-

ing of the difference formulation in the core of the line with the standard formulation in the wings.

Wanting to evaluate the effectiveness of the difference formulation in the core of the line, we apply the

gray approximation to Eqs. (5) and (6) giving
of
ot

þ cl
of
ox

¼ n
2
A21 � c K12 � K21 þ K12ð Þn½ �f ð14Þ
and
on
ot

¼ C12 � C12 þ C21 þ A21ð Þnþ c K12 � K21 þ K12ð Þn½ �
Z 1

�1

dlf ðlÞ; ð15Þ
respectively. The gray approximation is /(m) = 1/w for jm � m0j 6 w/2 and /(m) = 0 for jm � m0j > w/2, where

m0 is the line center frequency and w is the line width. Both f and d depend only upon the angle and position,

not on frequency, within the line. The line width, w, is factored out of the equations by suitably redefining

the fields.
Making the transformation to the difference field, the counterparts to Eqs. (14) and (15) are
odðx; t; lÞ
ot

þ cl
odðx; t; lÞ

ox
¼ �c K12 � K21 þ K12ð Þnðx; tÞ½ �dðx; t; lÞ � oBðnðx; tÞÞ

ot
� cl

oBðnðx; tÞÞ
ox

ð16Þ
and
onðx; tÞ
ot

¼ C12 � C12 þ C21ð Þnðx; tÞ þ c K12 � K21 þ K12ð Þnðx; tÞ½ �
Z 1

�1

dldðx; t; lÞ; ð17Þ
respectively. From these equations we develop three Monte Carlo methods based upon different treatments

of the source terms �oB/ot and �cloB/ox.
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3. Numerical development

Let us divide the slab into N zones. The zones are labeled from 1 through N from left to right with the

position of the left edge of the ith zone labeled xi. We specify an extra point, xN+1, to mark the position of

the right-hand boundary of the slab. We consider n to be piece-wise constant in space within a zone, but
allow it to vary continuously in time. Since B(n) behaves likewise, let us write Bi(t) as the value of B in

the ith zone at time t. Further, for the purposes of this discussion, let us define B0 and BN+1 for the two

boundary regions, representing the boundary conditions to the left and right of the slab respectively, in

accordance with our treatment of boundary conditions in the difference formulation introduced in the pre-

vious section. Then we may write
Bðx; tÞ ¼ B0 þ
XNþ1

i¼1

BiðtÞ � Bi�1ðtÞð Þuðx� xiÞ; ð18Þ
where u(x) is the unit-step function we define as u(x) = 1 for x > 0, u(x) = 0 for x < 0.

Generally, the total Monte Carlo weight to be emitted from a source S is given by the integral
W ¼
Z
R
S dR; ð19Þ
where R is the finite volume element of the relevant phase space used in the numerical model and dR is its

infinitesimal. For this model R is 2DxDt, and so we may write
W t ¼ �
Z l¼þ1

l¼�1

dl
Z
Dx
dx

Z
Dt
dt

oB
ot

ð20Þ
and
W x ¼ �c
Z l¼þ1

l¼�1

dl
Z
Dx
dx

Z
Dt
dtl

oB
ox

; ð21Þ
where the superscripts t and x indicate the weight emitted by the �oB/ot and the �cloB/ox source, respec-

tively. The probability distribution function of the physical variables to be sampled is given by
g ¼ S
W

; ð22Þ
for a source S emitting weight W. We use these relations to develop the foundation for three
Monte Carlo methods for solving the difference formulation for atomic line transport, Eqs. (16) and

(17).
3.1. Source terms

The spontaneous emission term, nA21/2, in the standard formulation, Eq. (14), is replaced by two new

source terms, namely �oB/ot and �cloB/ox, in the difference formulation, Eq. (16). The new source terms

play different roles than the spontaneous emission term of the standard formulation. The �cloB/ox term is

responsible for driving the transport of the d field through the slab, and the �oB/ot term acts to compensate

for changes in the reference field B(n) by changing the d field in order to hold f fixed.
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3.1.1. Source term �oB/ot

We evaluate Eq. (20) for a given zone i giving the weight to be accorded to the �oB/ot source term:
W t
i ¼ �

Z l¼þ1

l¼�1

dl
Z
Dxi

dx
Z t0þDt

t0

dt
oB
ot

� �
i

¼ �2Dxi Biðt0 þ DtÞ � Biðt0Þ½ �; ð23Þ
where we have used the piece-wise constant property of B in the integral over Dxi.
Now we may write the distribution function for the source in zone i using Eq. (22)
gti ¼
oB=otð Þi

2Dxi Biðt0 þ DtÞ � Biðt0Þ½ � : ð24Þ
Further development of the distribution function depends upon assumptions about the nature of the diff-

erencing employed and varies with our construction of the Monte Carlo methods we use for the difference

formulation. We will address the details of our construction later in this work.
3.1.2. Source term �cloB/ox
Now let us consider the space-derivative term. Due to the piece-wise constant treatment of n, this source

term is non-zero only at a discontinuity in the value of n between two adjoining zones or at a discontinuity

between the surfaces of the slab and its surroundings.

The derivative oB/ox gives
oB
ox

¼
XNþ1

i¼1

BiðtÞ � Bi�1ðtÞð Þdðx� xiÞ; ð25Þ
where d is the Dirac delta function.

Since �cloB/ox is an odd function of l in slab geometry, the sum of the weight emitted from this source

over all angles {h:l = cos h} is zero. Nevertheless, it is not correct to ignore the source; �cloB/ox is respon-

sible for driving the transport of d particles through the slab. Our solution is to emit d-particle pairs of
equal and opposite weight in +l and �l directions, thereby assuring that zero net weight is emitted without

statistical noise.

To find the weight to be emitted, say in the +x direction in the ith zone, we integrate the �cloB/ox
source from l = 0 to l = 1
W þx
i ¼ �c

Z l¼1

l¼0

ldl
Z t0þDt

t0

dt
Z xiþDxi

xi

dxdðx� xiÞ½BiðtÞ � Bi�1ðtÞ�

¼ � c
2

Z t0þDt

t0

dt½BiðtÞ � Bi�1ðtÞ�: ð26Þ
Weight emitted in the �x direction is identical, except for a change in sign.

Now we may write the distribution function for the source in the +x direction in zone i using

Eq. (22)
gþx
i ¼ 2ldðx� xiÞ BiðtÞ � Bi�1ðtÞ½ �R t0þDt

t0
dt BiðtÞ � Bi�1ðtÞ½ �

: ð27Þ
The presence of the d-function tells us that the particles are to be emitted at zone boundaries. Emission

angles are sampled according to l ¼ ffiffiffi
q

p
, where q is a random variate uniformly distributed between 0

and 1.
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3.2. Solution methods

We construct three different Monte Carlo solution methods employing the difference formulation for the

transport of an atomic line. In the construction we address the details of the treatment of the source terms.

The solution methods utilize different degrees of implicit treatment of the source terms, with each succeed-
ing method being more implicit than the one before it.

We begin by integrating Eq. (17) over a time step, approximating n(t) by n(t0 + Dt) in the collision

(pumping) terms and by n(t0) in the absorption term, giving
nðx; t0 þ DtÞ ¼ nðx; t0Þ þ C12 � C12 þ C21ð Þnðx; t0 þ DtÞ½ �Dt

þ c K12 � K21 þ K12ð Þnðx; t0Þ½ �
Z t0þDt

t0

dt
Z 1

�1

dld x; t; lð Þ; ð28Þ
where t0 is the census time of the previous Monte Carlo integration cycle and t0 + Dt is the census time of

the current cycle. This intermediate step is the common point of departure for the three Monte Carlo solu-

tion methods.
We would like to note that for the difference formulation the source terms of the transport equation,

Eq. (16), do not appear in the material response equation, Eq. (17), and are likewise absent in Eq. (28).

This is in contrast to Eqs. (14) and (15), where the spontaneous emission term, A21n, appears in both the

transport and the material response equation, causing stiff coupling between them. The self-consistent diff-

erencing of the spontaneous emission term in Eqs. (5) and (6), for the purpose of stability, leads to effec-

tive scattering in the IMC method discussed in [3], and the linear system solve in the SIMC method

discussed in [5].

3.2.1. The explicit solution method

In this method there is no implicit treatment of the sources and, unlike SIMC, it does not require the

inversion of a matrix at the end of each Monte Carlo integration cycle in order to calculate ni(t0 + Dt).
In this scheme �cloB/ox is explicitly differenced at time t0, and the action of �oB/ot is delayed until the

end of the integration loop, at which point n(t0 + Dt) is available.
Starting with the �oB/ot source for zone i, we approximate
oB
ot

� �
i

� Biðt0 þ DtÞ � Biðt0Þ
Dt

: ð29Þ
Substituting this result into Eq. (24) gives
gti ¼
1

2DxiDt
; ð30Þ
which directs us to distribute the weight given in Eq. (23) evenly within the zone.
Considering the �cloB/ox source, we take Bi(t)! Bi(t0), the value of Bi at the beginning of the time

interval. Substituting this into Eq. (26) gives
W þx
i ¼ � cDt

2
Biðt0Þ � Bi�1ðt0Þ½ �; ð31Þ
for emission in the +x-direction. And Eq. (27) becomes
gþx
i ¼ 2ldðx� xiÞ

Dt
; ð32Þ
where the weight of the source is to be distributed evenly throughout the time interval Dt, but the emission

is to take place on the zone boundary xi.
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At the beginning of each iteration of the Monte Carlo integration loop, difference particles from the

�cloB/ox source are emitted at the zone boundaries using B(t0), and distributed uniformly in time across

the time step interval Dt. The particles are then propagated to census time, t0 + Dt, according to Eq. (16)

before n(t0 + Dt) is calculated.
To obtain ni(t0 + Dt), write Eq. (28) as
niðt0 þ DtÞ ¼ cniðt0Þ þ cC12Dt þ
cc
Dxi

½K12 � ðK21 þ K12Þniðt0Þ�Di; ð33Þ
where i is the zone index, Dxi is the width of the zone,
c ¼ 1

½1þ ðC12 þ C21ÞDt�
; ð34Þ
and where
Di ¼
Z
Dt
dt

Z
Dxi

dx
Z 1

�1

dld x; t; lð Þ ð35Þ
is the time integral of the d-field calculated from Monte Carlo particles traveling through zone i during the

time step.
Now that we have an estimate of ni(t0 + Dt) from Eq. (33), difference particles sample the �oB/ot source

with the total weight given by Eq. (23) and are evenly distributed in space within a zone. This emission is

not evenly distributed across the time step, it has a time coordinate of t0 + Dt, the census time of the current

integration interval. This sequence is then repeated for the next time step.

3.2.2. The semi-implicit solution method

We call this method ‘‘semi-implicit’’ because we implicitly difference the �oB/ot source term, but explic-

itly difference the �cloB/ox source term. The implicit differencing of the �oB/ot source term leads to a ma-
trix solve at the end of each iteration of the Monte Carlo integration loop. Our purpose in examining this

method is to provide insight into the sources of numerical instability of the fully explicit method described

previously. Once one must pay the cost of the non-linear matrix solve, one might as well extract the benefits

of a fully implicit solution method.

In this semi-implicit treatment of the source terms for the difference formulation, the emission from

�oB/ot is calculated at the start of the integration loop, not postponed until the end as in the explicit

scheme just discussed. The weight emitted is given by Eq. (23). However, Bi(t0 + Dt) is unknown at this

point, and a portion of the weight, �2Dxi, is ‘‘symbolic’’ in the same vein as in [5] and requires a non-linear
matrix solve at the end of each Monte Carlo integration cycle. The remaining portion, 2DxBi(t0), contains

no unknown factors and provides known (numeric) contributions to the d-field. The particles are created

with time coordinates uniformly distributed over the interval Dt as dictated by Eq. (30), in contrast to

the explicit case where their time coordinates are set to census time.

Next, the �cloB/ox source is sampled in the same way as in the explicit treatment above, and d-particles

with weight given by Eq. (31) are created. These particles, fully numeric contributions to the d-field, are

distributed in space, time and direction according to Eq. (32).

This treatment of the source terms leads to the following representation of Eq. (28):
niðt0 þ DtÞ ¼ cniðt0Þ þ cC12Dt þ
cc
Dxi

K12 � ðK21 þ K12Þniðt0Þ½ � Di þ
XN
j¼1

DijBjðt0 þ DtÞ
" #

: ð36Þ
Here, Dij is the symbolic contribution to the ith zone from particles born in the jth zone, and Di is the

contribution to zone i coming from particles with numeric weights in much the same way as in Eq. (33),
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including the numeric contributions from �oB/ot and �cloB/ox sources. The sole contributor to symbolic

energy depositions is the forward-differenced portion of �oB/ot.

Since B is non-linear in n, Eq. (36) represents a non-linear system that must be solved for nj(t0 + Dt) at
the end of each cycle through the integration loop, whereas the equivalent expression in [5] represented a

system linear in n. We iterate the Newton–Raphson algorithm to solve the non-linear system for nj(t0 + Dt),
and then use B(nj(t0 + Dt)) to convert the Monte Carlo particles with symbolic weights to numeric weights.

In this way the d-field, at census, is fully numeric and free of unknown factors before the next iteration of

the Monte Carlo integration loop.
3.2.3. The implicit solution method

We call this method ‘‘implicit’’ because we treat the �cloB/ox implicitly in time. By taking

Bi(t) ! Bi(t0 + Dt), instead of Bi(t) ! Bi(t0) as in the last two methods introduced above, Eq. (26) becomes
W þx
i ¼ � cDt

2
Biðt0 þ DtÞ � Bi�1ðt0 þ DtÞ½ �: ð37Þ
Eq. (32) remains unchanged.

The sequence of calculations in the integration loop is similar to that used in the semi-implicit method

above. First, particles sampling the �oB/ot source are emitted with a portion of their weight numeric,

�2DxiBi(t0), and the remainder symbolic, �2Dxi, according to Eq. (23) and exactly like the semi-implicit
method. Next, �cloB/ox is sampled according to Eq. (32), but in this case the weight is purely symbolic.

We write Eq. (28) as
niðt0 þ DtÞ ¼ cniðt0Þ þ cC12Dt þ
cc
Dxi

K12 � ðK21 þ K12Þniðt0Þ½ �

� Di þ
XN
j¼1

Dt
ijBjðt0 þ DtÞ þ

XNþ1

k¼1

Dx
ik Bkðt0 þ DtÞ � Bk�1ðt0 þ DtÞ½ �

( )
ð38Þ
where we introduce the new symbolic contribution, Dx
ik, of the �cloB/ox source emitted from zone k and

propagated to zone i, where [Bk(t0 + Dt) � Bk� 1(t0 + Dt)] is the factor necessary to convert that symbolic

weight into numeric weight. One may consider the last summation as one over zone interfaces while remem-

bering that the index k in Bk and Bk� 1 refers to zone indices. The term Dt
ij represents the symbolic contri-

bution of the �oB/ot source, the Di term includes the numeric contributions from �oB/ot sources, and
Bj(t0 + Dt) plays the same role in this equation as it does in Eq. (36). B0 and BN+1 are prescribed boundary

conditions.
4. Numerical results in the gray approximation

We select the SIMC solution method in the standard formulation as a point of comparison for the dif-

ference formulation [7]. We discuss the numerical accuracy and efficiency, and report on the numerical sta-

bility of each of the three Monte Carlo solution methods we developed in the previous section, with

emphasis on exploring the stability characteristics of the fully explicit version, itself free of a matrix solve

at the end of each integration cycle, relative to the SIMC treatment of the standard formulation for a range

of optical thicknesses. We do not address the issue of teleportation error [9] in this work. For the sake of
brevity, we refer to each of the Monte Carlo solution methods we developed above for the difference for-

mulation for atomic line transport as one of a trio of ‘‘difference methods’’ and to SIMC for the standard

formulation as the ‘‘standard method’’. The problems were run until equilibrium was reached.
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4.1. Relative accuracy and efficiency

Table 1 lists the parameters describing the initial and boundary conditions and the material parameters

we use in comparing the SIMC method (standard method) for the standard formulation to each of the three

Monte Carlo methods (difference methods) developed in the previous section for the difference formulation.
In all calculations the slab is initialized with n = 0.25 for all zones and the photon fields f(t = 0) = 0. This

initial state for the photon field, f, corresponds to a non-zero initial difference field, d, which must be sam-

pled to properly initialize the system. While this provides a net zero photon field in each zone, the statistical

nature of sampling leads to small, local fluctuations. As we will show, this in turn can lead to differences

among the methods in their transient behavior, even in the limit of short time steps.

The optical depth for this model depends on the value of n(x,t). We first tune the input parameters using

the standard method to obtain the desired nominal optical depth, then use the same input values for the

difference methods.
In order to more faithfully reproduce the boundary layer near the edges of the slab for thicker problems,

we find it necessary to modify the zoning, depending upon optical thickness, and this can influence execu-

tion time. Since the gradient of n in space varies slowly and more uniformly over the length of the slab in the

thin problems – optical thicknesses 1 and 10 – we model the slab using 21 zones of uniform size in thin

systems. However, for thick problems – optical thicknesses of 100 and 1000 – gradients in n are concen-

trated in the boundary layers. For these we use small zones in the boundary layers and increase their size

in a geometric progression towards the center of the slab. Thus, we can compare accuracy and efficiency

among methods for a given optical thickness only.

4.1.1. Relative accuracy

Table 2 demonstrates the accuracy of the three Monte Carlo solution methods relative to the SIMC

method for a simple, two-level, system in slab geometry. The data consist of the means and standard devi-

ations of 120 statistically independent calculations of the optical thickness of the slab for each method, in

equilibrium, for the fixed input parameters shown in Table 1. The results show that the means of the cal-

culated optical thicknesses are within one standard deviation of each other. Therefore, the results are sta-

tistically consistent with the assertion that all three Monte Carlo solution methods in the difference
formulation converge to the same result as SIMC in the standard formulation in equilibrium. It is interest-

ing to note that the standard deviations of the difference methods are approximately independent of optical

depth, whereas those of SIMC increase several orders of magnitude as optical depth increases.
Table 1

Input parameters used for all Monte Carlo solution methods describing the initial conditions, boundary conditions, and material

properties of the unit slab

Parameter Value

Nominal optical

depth = 1

Nominal optical

depth = 10

Nominal optical

depth = 100

Nominal optical

depth = 1000

n(0 6 x 6 1,t = 0) 0.25 0.25 0.25 0.25

f(x,l,t = 0) 0 0 0 0

n(x < 0,t) 0 0 0 0

n(x > 1,t) 0 0 0 0

A21 10 10 10 10

K12 1.125 18 207.5 2155

K21 1.125 15.3422 207.5 2155

C12 0.245423 0.245423 0.245423 0.245423

C21 0.667128 0.667128 0.667128 0.667128



Table 2

The means and standard deviations of the optical thickness of a unit slab calculated using each of the three difference methods and the

standard method, at equilibrium. All calculations are matched in execution time

Nominal optical

thickness

Difference method:

explicit

Difference method:

semi-implicit

Difference method:

implicit

Standard method

1 1.0087 ± 2 · 10�4 1.0088 ± 1 · 10�4 1.0087 ± 1 · 10�4 1.00873 ± 8 · 10�5

10 10.067 ± 1 · 10�3 10.067 ± 1 · 10�3 10.0671 ± 9 · 10�4 10.067 ± 4 · 10�3

100 98.655 ± 1 · 10�3 98.654 ± 1 · 10�3 98.653 ± 1 · 10�3 98.65 ± 8 · 10�2

1000 998.726 ± 1 · 10�3 998.726 ± 1 · 10�3 998.7263 ± 9 · 10�4 998.7 ± 9 · 10�1
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4.1.2. Relative efficiency

The variance in a Monte Carlo calculation scales inversely with the number of particles used, in the limit

of large particle count. We use this fact as a means to evaluate the relative efficiency of the methods for a

given discretization of the problem. We match the run-times among the methods by adjusting the number

of Monte Carlo particles used in each, taking care to ensure that the Monte Carlo effort dominates the cal-

culation and that the variance scales appropriately with the number of Monte Carlo particles. Then the var-
iances of the calculations are inversely proportional to the relative efficiencies of the methods. This is how

we estimate the run-time advantage of the difference methods over the standard method.

Table 3 consists of the variances of the optical depths presented in Table 2, and Table 4 shows the cal-

culated speed-up factors, based upon the measurements in Table 3. All three difference methods show a

clear run-time advantage over the standard formulation for thick systems. The advantage is striking at

an optical depth of 1000 mean free paths. However, as Table 4 shows, for thin problems the advantage

diminishes and is lost completely somewhere between optical depths of 10 and 1, corresponding to a

per-zone optical depth of 0.5 and 0.05, respectively. For thick systems, the desired statistical accuracy is
achieved with a much lower particle count.

4.2. Transient behavior of the difference and standard formulations

While we do not expect two different solution methods, such as the standard method and any one of the

three difference methods, to behave identically during the first few time steps of the integration, we do ex-

pect their behaviors to converge for sufficiently small time step sizes.

This is indeed the case. Figs. 1–6 show the transient behavior of n(t), the fraction of atoms in the excited
state, in the central zone of a slab with an optical thickness of 10 mean free paths at equilibrium. Figs. 1–4

show the transient behavior of each of the three difference methods, with Figs. 5 and 6 showing the tran-

sient behavior of the standard method. Each figure shows graphs of n(t) calculated with different time step

sizes in units of (slab length)/c, where c is the speed of light in the material (set to 1 in this work).
Table 3

The variances of the optical thickness of a unit slab calculated using the three difference methods and the standard method, at

equilibrium

Nominal optical

thickness

Difference method:

explicit

Difference method:

semi-implicit

Difference method:

implicit

Standard method

1 3.0 · 10�8 1.5 · 10�8 1.4 · 10�8 6.0 · 10�9

10 1.1 · 10�6 1.0 · 10�6 8.2 · 10�7 1.8 · 10�5

100 1.1 · 10�6 1.2 · 10�6 9.3 · 10�7 6.9 · 10�3

1000 9.6 · 10�7 1.0 · 10�6 6.0 · 10�7 8.7 · 10�1



Table 4

Speed-up factors of the three difference methods over the standard method for various nominal optical thicknesses

Nominal optical thickness Difference method: explicit Difference method: semi-implicit Difference method: implicit

1 2.0 · 10�1 4.0 · 10�1 4.3 · 10�1

10 1.6 · 101 1.8 · 101 2.2 · 101

100 6.3 · 103 5.8 · 103 7.4 · 103

1000 9.1 · 105 8.7 · 105 1.5 · 106

Fig. 1. Transient behavior of n(t) – the fraction of atoms in the excited state – in the central zone for the explicit difference method.
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Initially the slabs have uniform excitation energies corresponding to n(x,t = 0) = 0.25, but there are no

photon fields. At the start, the radiation field and the material energy are out of equilibrium, with n falling

initially in order to bring about radiative equilibrium. The motion of n is then driven by the net collisional
excitation and absorption, recovering on a longer time scale. Each of the difference methods and the stand-

ard method show this behavior and agree qualitatively. Note the overshoot in the standard formulation and

explicit implementation of the difference formulation for long time steps in Figs. 2 and 6. One can see that

while similar, the overshoot for the standard implementation is more pronounced. The quantitative agree-

ment among the methods improves with decreasing time step sizes, and Fig. 7 shows good overlap for a

time step size of 0.00625.

Aside from the noise apparent in the standard method as the magnitude of the photon field grows, there

is a small but discernible difference in the minimum of n(t) among the four methods. We believe this is due
to sampling noise. Recall that initializing the photon field to zero in the difference formulation requires

sampling d(t = 0) so that f = d + B(t = 0) = 0. Statistical fluctuations in the Monte Carlo sampling of the

physical coordinates of the particles composing this initial d-field leads to small, localized fluctuations that

can affect n shortly after t = 0.

Table 5 shows the average and one standard deviation of the minimum n reaches for 200 statistically

independent calculations using each of the three difference methods and the standard method, all matched

in execution time. The time step size used in each calculation is 0.00625, the same as in Fig. 7. Also shown
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Fig. 2. Detail of the transient behavior of n(t) – the fraction of atoms in the excited state – in the central zone for the explicit difference

method.

Fig. 3. Transient behavior of n(t) – the fraction of atoms in the excited state – in the central zone for the semi-implicit difference

method.
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are the average and standard deviation of the times at which n reached its nadir in the calculations. Table 5

shows that the three difference methods and the standard method produce minima of the same magnitude

and at the same time, within the estimated uncertainties. Thus we show that not only do the difference
methods agree with the standard method in equilibrium (see Table 2) they also agree in the transient behav-

ior of n for sufficiently small time step sizes.



Fig. 4. Transient behavior of n(t) – the fraction of atoms in the excited state – in the central zone for the implicit difference method.

Fig. 5. Transient behavior of n(t) – the fraction of atoms in the excited state – in the central zone for the standard method.
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4.3. Numerical stability of the difference formulation

We explore the stability characteristics of the three different treatments of the source terms in the differ-

ence formulation for line transport. Of particular interest is the numerical stability of the explicit treatment,

since it is free of a matrix solve in the Monte Carlo integration cycle and will thus remain economical as the

number of zones in the problem increases. We find the implicit treatment, Eq. (38), for the difference for-

mulation to be numerically stable for optical thicknesses ranging from 1 to 1000, even for time step sizes on
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Fig. 6. Detail of the transient behavior of n(t) – the fraction of atoms in the excited state – in the central zone for the standard method.

Fig. 7. Transient behavior of n – the fraction of atoms in the excited state – of the three difference methods and the standard method.
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the order of 10 light travel times across the slab, and we expect the treatment to remain stable for thicker

systems. This provides numerical evidence that this treatment of the source terms is unconditionally stable.
We find that both the explicit and the semi-implicit treatments, Eqs. (33) and (36), respectively, are only

conditionally stable. For these treatments of the source terms, stability depends upon the optical depth

of the slab, the size of the zones, and the size of the time step. Figs. 8 and 9 show the approximate neigh-

borhood of the onset of instability for both treatments. The methods are numerically unstable in the regions

above their graphs. Beyond a certain optical thickness, the systems become stable for practically any time



Table 5

The mean and standard deviation of the minimum n and the time of its nadir for any step size. Quantities were calculated using the

three versions of the difference method and the standard method

Monte Carlo solution methods Minimum n Time of nadir of n

Difference method: explicit 0.204 ± 0.001 0.197 ± 0.008

Difference method: semi-implicit 0.204 ± 0.001 0.196 ± 0.008

Difference method: implicit scheme 0.204 ± 0.001 0.196 ± 0.008

Standard method 0.2041 ± 0.0001 0.193 ± 0.004
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Fig. 8. Graphs of the time step size versus optical depth of the slab near the edge of numerical stability for the explicit and semi-

implicit difference methods. Two zone thicknesses are shown. The vertical axis is in units of (slab length)/c. Instability for a given

treatment of the source terms occurs above the line. Beyond the termination of the lines, the calculations are stable for any time step.
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step size, so the graphs terminate. The calculations were run until the systems were well equilibrated, with

unstable calculations identified when we observed the characteristic, geometrically growing oscillation

about equilibrium with a period of 2Dt in the graphs of n(t).

Whereas the explicit differencing of the standard formulation is known to be stable for thin and unstable

for thick systems [2], we find the contrary for the semi-implicit and fully explicit difference methods. Thus,

in the explicit treatment of the difference formulation it appears that we trade numerical stability in thin

systems for numerical stability in thick systems.

Figs. 8 and 9 show that the regions of stability for both the explicit and the semi-implicit methods are
similar in shape. It is apparent in both figures that the explicit treatment requires shorter time steps in order

to obtain stability. For thin systems the stability of both treatments is insensitive to the zone size, as shown

in Fig. 9. For thick systems the constraint on the time step size in order to obtain stability is relaxed as the

zone size is increased. Both figures demonstrate that the optical thickness of the zones is an important fac-

tor in the stability of the calculations.

It is interesting to note the weakness of the dependence of both the semi-implicit and explicit treatments

of the source terms on the zone size, Dx, for thin systems. Terms in the finite difference equations, Eqs. (33)
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and (36), that depend upon zone size have little apparent influence upon the stability of those solution

methods. Additionally, since both treatments of the source terms have similar regions of stability, a formal

stability analysis of the simpler explicit formulation may give insight into the stability criterion of the more

complicated, semi-implicit method.

For the slab geometry, collisional-pumped, line-trapping problems studied here, the explicit treatment of

the source terms, unencumbered by a non-linear system solve at each time step, appears no more econom-
ical than the semi-implicit method, which is more stable. One should consider, however, that the cost of the

non-linear system solve grows rapidly as one scales the number of zones in the problem. Further, while the

implicit scheme demonstrates superior stability characteristics, it too relies upon a non-linear system solve

at each time step. The primary difference between the conditionally stable semi-implicit method and the

unconditionally stable implicit method is in the treatment of the �cloB/ox-term. In addition, since the

�oB/ot-term is explicitly treated in the explicit method and implicitly treated in the semi-implicit method

without a great difference in the stability regions for the two, we believe that the explicit differencing of

the �cloB/ox-term is responsible for driving the numerical instability.
5. Concluding remarks

In this paper, we examined the accuracy and performance of the difference formulation [7] relative to the

SIMC [5] solution method applied to the standard formulation of photon transport in a strongly absorbing/

emitting two level system using the gray approximation. We developed three different numerical treatments

of the difference formulation and presented evidence of their superior computational efficiency for thick sys-
tems. We found that to an equivalent noise figure, the difference methods were 106 times faster than the

standard method for slabs 1000 mean free paths thick, or equivalently, provide a 103 reduction in Monte

Carlo noise for a given execution time.
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We demonstrated that the three implementations of the difference formulation we developed were in

excellent agreement with the SIMC implementation of standard formulation. Additionally, we showed

through a detailed comparison that while their transient behavior differs for large time steps there is good

numerical evidence that all the treatments of the source converge for sufficiently small time steps.

We found that the fully implicit version of the difference formulation is stable, and we believe it to be
unconditionally so. The fully explicit version, although free of any matrix solve, is only conditionally stable.

Moreover, it possess a stability region similar to the semi-implicit difference method which may provide in-

sight into a formal stability analysis. For both conditionally stable versions of the difference formulation,

stability appears to depend strongly upon the optical thickness of the zones dividing the material. Finally,

we believe that it is the explicit treatment of the �clo B/ox term that drives the instability in the explicit

difference method.

As a final note, the explicit treatment of the source terms in the standard formulation is stable in the limit

of optically thin systems, while the explicit source term treatment of the difference formulation is stable in
the limit of optically thick systems. This leaves open the possibility that the non-linear matrix solve might

be avoided when applying the difference formulation to practical problems involving thick media.
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[7] Abraham Szöke, E.D. Brooks III, The transport equation in optically thick media, Journal of Quantitative Spectroscopy and

Radiative Transfer 91 (2005) 95–110.

[8] D. Mihalas, Stellar Atmospheres, W.H. Freeman and Company, San Francisco, 1978.
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